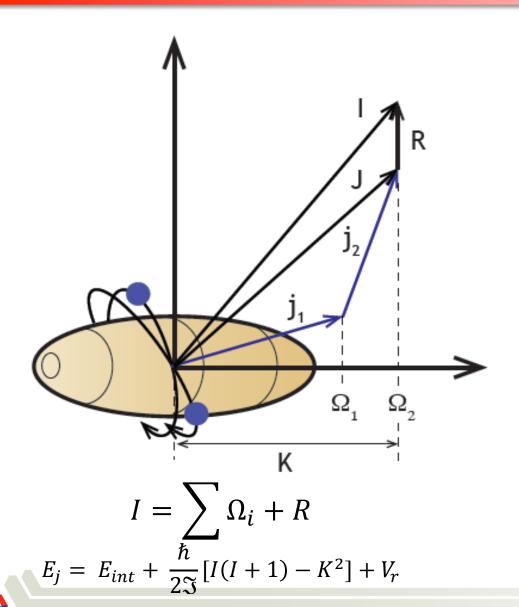
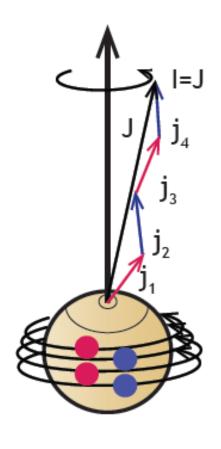


Configurations and Hindered Decays of K-Isomers in deformed nuclei with A>100

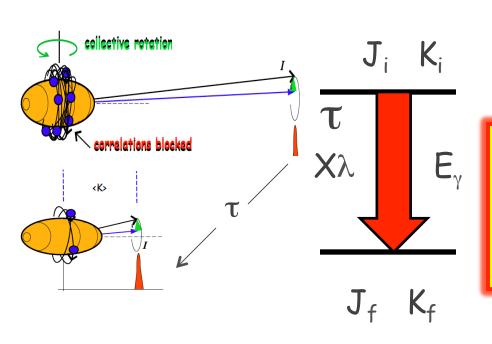
with G.D. Dracoulis & T. Kibedi (ANU)




project started several years ago (*NSDD 2007*) and evolved from a simple compilation of NS data to a comprehensive horizontal evaluation & associated database

- ✓ implications for basic science & applications
- ✓ implications for (future) ensdf development
- ✓ implications to other ND activities that deal with deformed nuclei

angular momentum generation



$$I = J = \sum_{i} j_{i}$$
$$E_{j} = \sum_{i} e_{j} + V_{r}$$

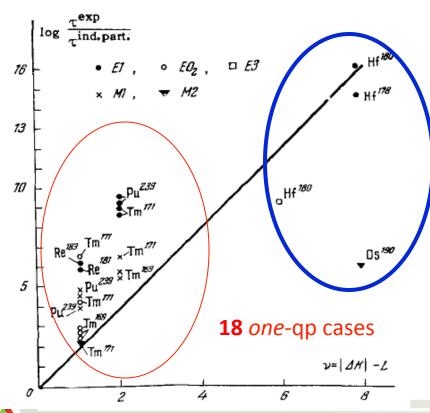
K hindered decays

- J_i K_i \checkmark hindrance $F_w = \tau_{\gamma} / \tau_{W}$ \checkmark reduced hindrance $f_v = F_w^{1/v}$
 - \checkmark typically $f_v = 20 300$, but many exceptions...
 - \checkmark rule of thumb 100 per \lor usually attributed to Lobner...

- \checkmark transition of multipolarity λ can only change the K projection by at most λ .
- ✓ the shortfall is the degree of "forbiddenness" $v = \Delta K \lambda$.

Rusinov's systematics

SOVIET PHYSICS USPEKHI


VOLUME 4, NUMBER 2

SEPTEMBER-OCTOBER 1961

NUCLEAR ISOMERISM

L. I. RUSINOV*

Usp. Fiz. Nauk 73, 615-630 (April, 1961)

only **4** *two*-qp cases

small in all other instances. The experimental data on K-forbidden transitions show that increase of K forbiddenness by one degree represents the reduction of transition intensity by a factor of about 100. A sep-

$$\log F_{\mathbf{W}} = 2(|\Delta K| - L)$$

Lobner's systematics

Volume 26B, number 6

PHYSICS LETTERS

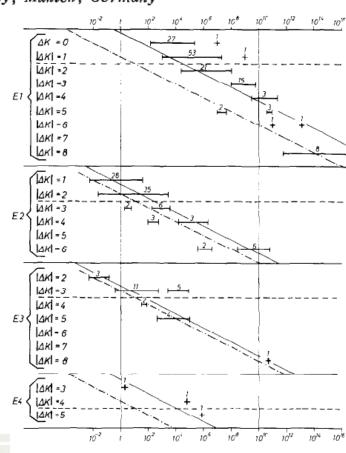
19 February 1968

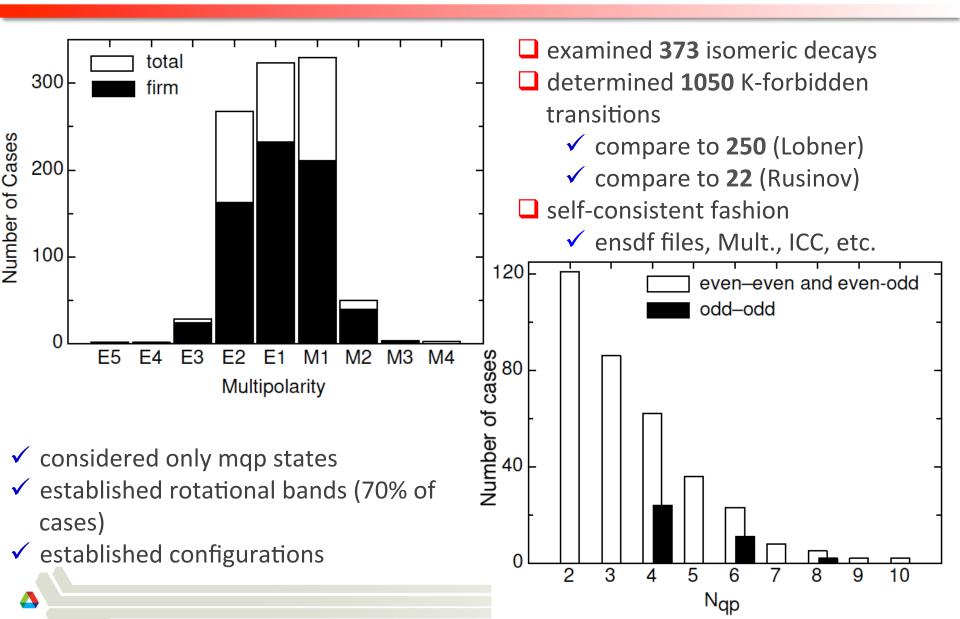
SYSTEMATICS OF ABSOLUTE TRANSITION PROBABILITIES OF K-FORBIDDEN GAMMA-RAY TRANSITIONS

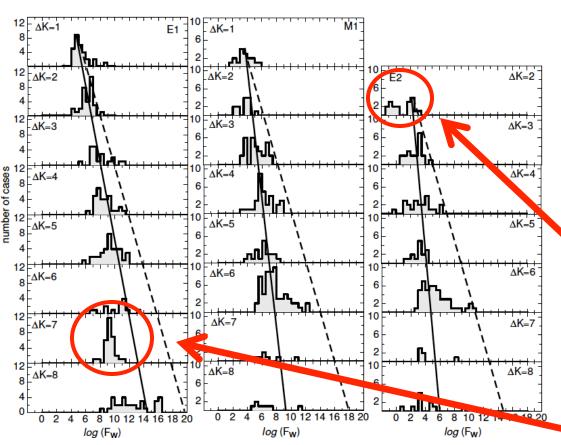
K. E. G. LÖBNER

Department of Physics, Technical University, Munich, Germany

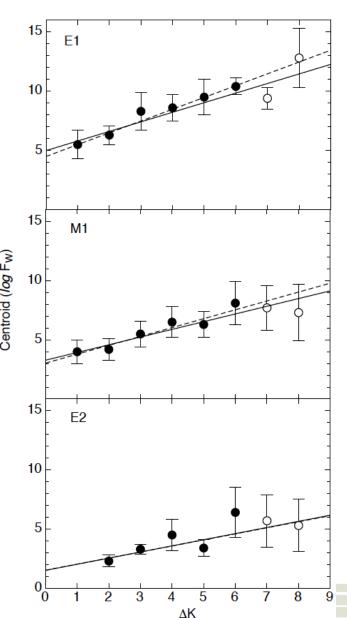
250 cases- both *one*- and *two*- and higher mgp isomers

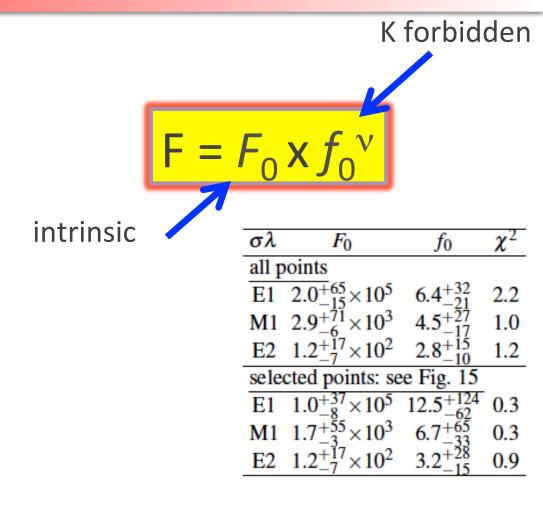

sloping lines given in fig. 1 and fig. 2. It is found that the reduced transition probabilities decrease approximately by a factor of 100 per degree of K-forbiddenness in agreement with


The frequently used "empirical rule" of Rusinov [1]: $\log F_{W} = 2(|\Delta K| - L)$ is in general not true, especially not for the El and E4 transi-


It must be emphasized that the F_W values scatter considerably. Therefore, care should be taken if K values of levels are deduced from measured γ -ray transition probabilities.

New systematic studies


K-hindrance distributions



✓ hindrance $F_w = \tau_\gamma / \tau_W$

- distributions are not symmetrical –role of different mixing mechanisms
- □ centroids increase much more slowly than what would be expected from the rule of thumb, e.g. ~100 per degree of K-forbiddenness (dashed lines)
 - \triangle Δ K=2 (allowed) E2 has two peaks
 - ✓ non-intrinsic states transitions between rotational-aligned structures in transitional nuclei, e.g. I^π=12⁺ state in ¹⁹²Os
 - ΔK=7 E1 is strongly peaked, but at low value compared to the trend
 - ✓ multiple transitions from a single isomer, e.g. K^π=7⁻ in ¹⁸⁰Os five
 E1 transitions

K- hindrance classification

- ✓ less than the ~100 per degree of K forbiddenness
- ✓ it is multipolarity dependent
- √ no need to divide by arbitrary factor of ~10⁵ for E1

K-Isomers Evaluation - implications

- □ completed and published in *ADNDT* − *a* short *Physical Review Letters* article is under preparation
- □ data are available in ENSDF format (will be continuously updated) implications for ENSDF format development *K* quantum number in deformed nuclei
- ☐ implications for nuclear reactions modeling at low excitation energies (NRF, astrophysics ...), e.g. level densities, strength functions, RIPL, etc.
- □ new processing codes development modification of ruler (a nightmare) & new python code (from scratch) ... it is not that complicated ...

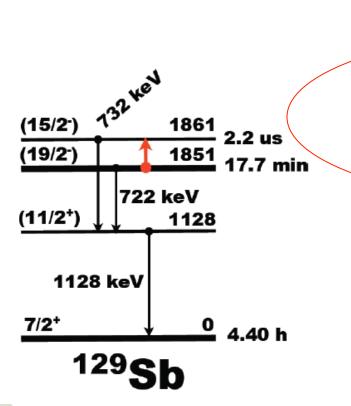
Review of Metastable States in Heavy Nuclei

G. D. Dracoulis *

Department of Nuclear Physics, R.S.P.E. Australian National University, Canberra, A.C.T. 0200, Australia

P. M. Walker

Department of Physics, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom


E-mail: P.Walker@Surrey.ac.uk

invited article by the editorial board of the journal *Reports on Progress in Physics*

F. G. Kondev

Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois, $60439, \, \mathrm{USA}$

E-mail: kondev@anl.gov

6	Isomer targets	52
7	Isomer beams	53
8	Energy traps, induced deexcitation, lasers and astrophysics 8.1 180 Ta	53 54
	8.2 ¹⁷⁸ Hf	55 56 56 57
9	Isomers for medicine	59
10	Key experimental developments	59
	10.1 Neutron-deficient and very heavy nuclei	59
	10.1.1 Recoil-decay tagging and related techniques	59
	10.2 Neutron-rich nuclei	62
	10.2.1 Relativistic projectile fragmentation	62
	10.2.2 Incomplete fusion reactions	63
	10.2.3 Fusion-evaporation reactions with radioactive beams	63
	10.2.4 Multi-nucleon transfer and deep-inelastic reactions	64
	10.2.5 Isomers in storage rings	65
	10.3 Sub-nanosecond timing detectors: LaBr ₃	68
	10.4 Separating isomers from ground states	68
	10.4.1 Mass selection	68
	10.4.2 Hyperfine structure	69